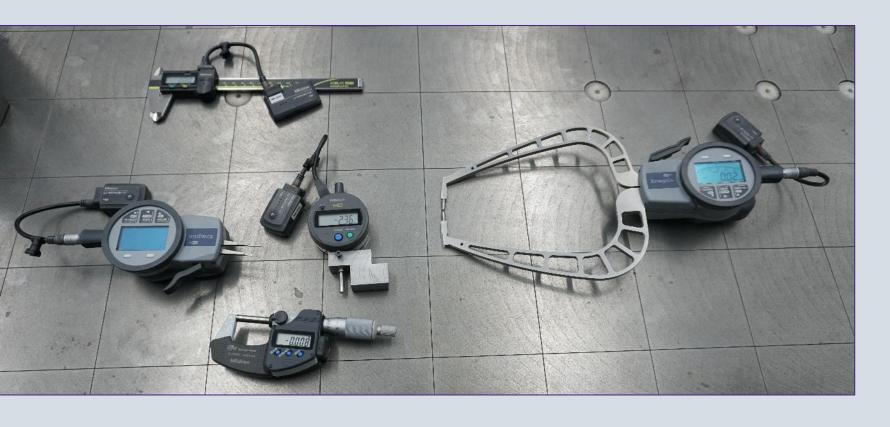


MEASURMENT TECHNOLOGY

In order to ensure the high-quality requirements of our customers in component production and parts rework, we have expanded our range of services by the area of measurement technology. Here we generate measurement reports in order to analyze tools or components, to work out measures for the elimination of defects and to eliminate them if necessary.


We do not want to limit this scope of services to our internal purposes, but also want to offer it to our customers for their benefit.

MEASURING MACHINE

Zeiss / Stiefelmayer C160

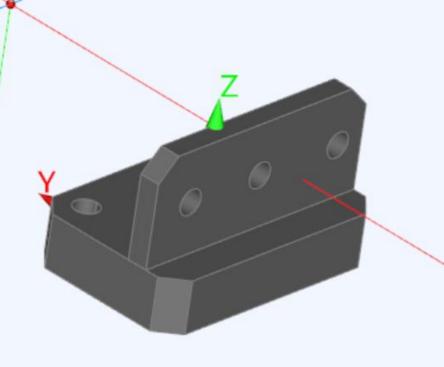
- Table size 3500mm x 1500mm
- Touch-probe-system Renishaw
- Software Wenzel Quartis R2018-2

U-WAVE

With the Mitutoyo U-Wave system, measurement data can be read in and evaluated immediately with various handheld devices. In this way, small series measurements can be carried out quickly.

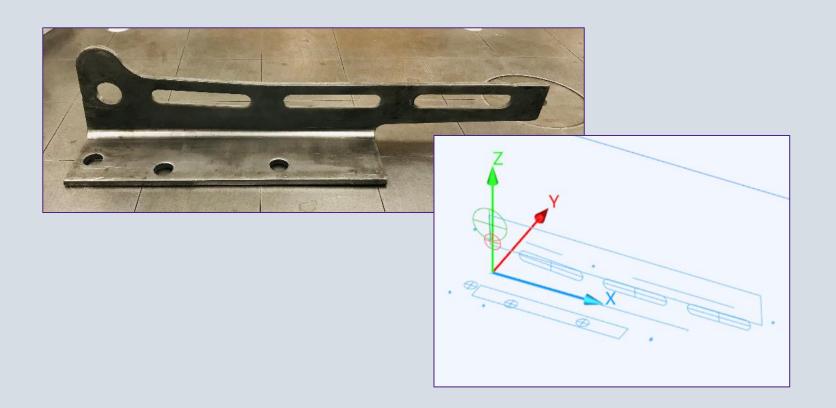
FLEXIBLE MODULAR SYSTEM

With our flexible modular system, different recording situations can be represented according to given requirements. We are also happy to use fixtures provided by the customer.



MEASURING

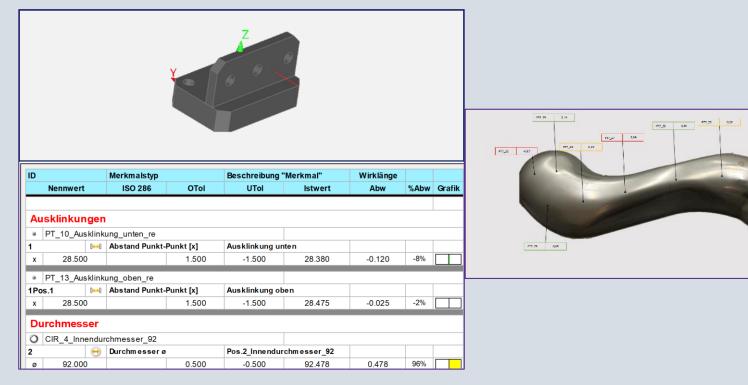
Tactile measurement is currently considered the most accurate measuring method. With our Zeiss/Stiefelmayer measuring machine we can carry out precise single measurements as well as small series measurements according to the requirements of our customers.


Supported 3D-Formats

- Autodesk Inventor
- Catia
- NX
- Solid Edge
- STEP
- VDA-FS
- ..

COMPARISON AGAINST 3D DATA

By means of the measuring software Quartis R2018-2 a target/actual comparison between the physical component and the theoretical 3D data can be made effortlessly. By converting the data, we support all common 3D file formats.



MEASURING WITHOUT DATA

Even the most important features of components whose 3D data are not available can be measured and evaluated by us.

tabular view

graphical view

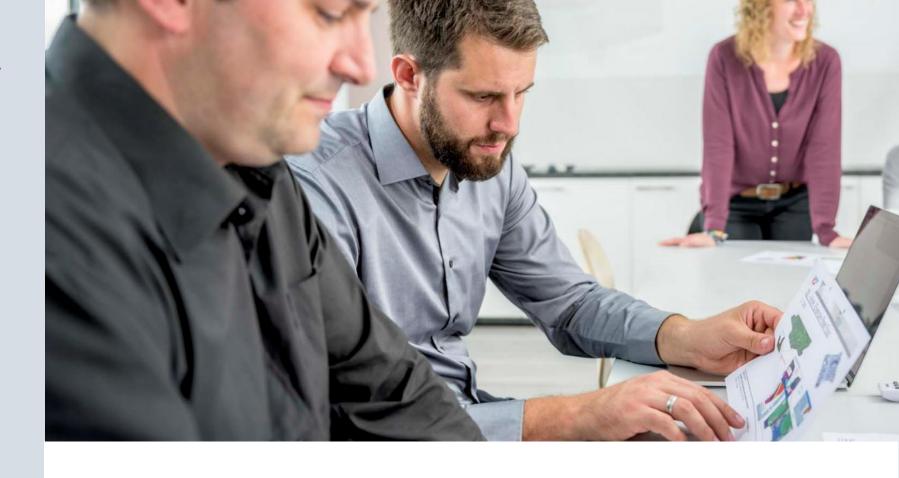
MEASUREMENT REPORTS

For visualization and evaluation of the measurement data, we create customer-specific measurement reports. Depending on the customer's requirements, dimensional, shape, position or tolerance data/deviations can be displayed here.

Julistik															
Werkstück	-ID		2												
Reschreibung Zeichnungs Nr. Kommentar			_	Schwallwand DAG 735x565 2003978											
Kommenta			007												
Stichprobe	numfang		2												
ID	Beschreibung	Merkmalstyp	Präfix	Nennwert	UTol	OTol	Mittel	Min	Max	s	Spannweite	Anzahl	>Tol	Ср	Cpk
1	RPS X1	Position [x]	х	143,000	-0,050	0,050	143,000	143,000	143,000	0,000	0,000	1	0	0,000	0,0
2	RPS X2	Position [x]	x	143,000	-0,050	0,050	143,000	143,000	143,000	0,000	0,000	1	0	0,000	0,0
3	RPS X3	Position [x]	x	143,000	-0,050	0,050	143,000	143,000	143,000	0,000	0,000	1	0	0,000	0,0
4	RPS Z4	Position [z]	Z	-152,094	-0,050	0,050	-152,094	-152,094	-152,094	0,000	0,000	1	0	0,000	0,0
5	RPS Z5	Position [z]	Z	-152,094	-0,050	0,050	-152,094	-152,094	-152,094	0,000	0,000	1	0	0,000	0,0
6	RPS Y6	Position [y]	у	-364,482	-0,050	0,050	-364,482	-364,482	-364,482	0,000	0,000	1	0	0,000	0,0
7	Position 1	Abstand Punkt-Punkt [y]	у	730,000	-0,800	0,800	733,790	733,790	733,790	0,000	0,000	1	1	0,000	0,0
8	Position 2	Abstand Punkt-Punkt [z]	Z	560,000	-0,800	0,800	559,853	559,853	559,853	0,000	0,000	1	0	0,000	0,0
9	Position 3_1	Positionstoleranz d [y z]		0,000		4,000	5,186	5,186	5,186	0,000	0,000	1	1	0,000	0,0
10	Position_4_EB_E	E Abstand Punkt-Ebene	d	75,000	1,000	3,000	78,379	78,379	78,379	0,000	0,000	1	1	0,000	0,0
11	Position_4_lh	Abstand Punkt-Ebene	d	75,000	1,000	3,000	78,596	78,596	78,596	0,000	0,000	1	1	0,000	0,0
12	Position_4_rh	Abstand Punkt-Ebene	d	75,000	1,000	3,000	79,061	79,061	79,061	0,000	0,000	1	1	0,000	0,0
13	Position_4_lv	Abstand Punkt-Ebene	d	75,000	1,000	3,000	78,307	78,307	78,307	0,000	0,000	1	1	0,000	0,0
14	Position_4_Ir	Abstand Punkt-Ebene	d	75,000	1,000	3,000	77,553	77,553	77,553	0,000	0,000	1	0	0,000	0,0
15	Position_5	Abstand Punkt-Punkt [z]	Z	95,000	-1,000	1,000	98,464	98,464	98,464	0,000	0,000	1	1	0,000	0,0
16	Position_6	Abstand Punkt-Punkt [z]	Z	75,000	-1,000	1,000	74,166	74,166	74,166	0,000	0,000	1	0	0,000	0,0
17	Position_7	Abstand Punkt-Punkt [z]	Z	75,000	-1,000	1,000	72,392	72,392	72,392	0,000	0,000	1	1	0,000	0,0
18	Position_8	Abstand Punkt-Punkt [z]	Z	95,000	-1,000	1,000	99,409	99,409	99,409	0,000	0,000	1	1	0,000	0,0
19	Position_9	Abstand Punkt-Punkt [y]	у	200,000	-1,000	1,000	199,725	199,725	199,725	0,000	0,000	1	0	0,000	0,0
20	Position_10	Abstand Punkt-Punkt [y]	у	400,000	-1,000	1,000	403,338	403,338	403,338	0,000	0,000	1	1	0,000	0,0
21	Position 3_2	Positionstoleranz d [y z]		0,000		2,000	4,923	4,923	4,923	0,000	0,000	1	1	0,000	0,0
21Position		Durchmesser ø	Ø	18,000	-1,000	1,000	17,717	17,717	17,717	0,000	0,000	1	0	0,000	0,0
22Position		Durchmesser ø	Ø	18,000	-1,000	1,000	17,994	17,994	17,994	0,000	0,000	1	0	0,000	0,0
23Position	13_1	Durchmesser ø	Ø	80,000	-1,000	1,000	80,647	80,647	80,647	0,000	0,000	1	0	0,000	0,0
24Position		Durchmesser ø	Ø	80,000	-1,000	1,000	80,840	80,840	80,840	0,000	0,000	1	0	0,000	0,0
25Position	13_2	Durchmesser ø	Ø	80,000	-1,000	1,000	80,910	80,910	80,910	0,000	0,000	1	0	0,000	0,00

DATA EXPORT

Statistik - Übersicht


In addition to statistical evaluations for checking machine/process capability or for Q-DAS, metrological data such as measuring programs, coordinate systems, etc. can also be exported.

Measuring technology

11

#09

COMPONENT ANALYSIS

Based on the collected data and the experience of our experts in the field of forming technology and tool making, qualitative defects on the part can be analyzed quickly. The defects can be remedied in the short term by our part rework.

YOUR CONTACT PERSON

Contact

IPM Automotive GmbH

Osterlängstraße 60, 73527 Schwäbisch Gmünd-Lindach, Germany

Martin Müller mmueller@ipma-group.com

Tel.: +49 7171 87567-24

Mobil: +49 172 453 37 15

